5-2 Perpendicular and Angle Bisectors

Objective To use properties of perpendicular bisectors and angle bisectors

In the Solve It, you thought about the relationships that must exist in order for a bulletin board to hang straight. You will explore these relationships in this lesson.

Essential Understanding There is a special relationship between the points on the perpendicular bisector of a segment and the endpoints of the segment.
In the diagram below on the left, $\overleftrightarrow{C D}$ is the perpendicular bisector of $\overrightarrow{A B} . \overleftrightarrow{C D}$ is perpendicular to $\overline{A B}$ at its midpoint. In the diagram on the right, $\overline{C A}$ and $\overline{C B}$ are drawn to complete $\triangle C A D$ and $\triangle C B D$.

You should recognize from your work in Chapter 4 that $\triangle C A D \cong \triangle C B D$. So you can conclude that $\overline{C A} \cong \overline{C B}$, or that $C A=C B$. A point is equidistant from two objects if it is the same distance from the objects. So point C is equidistant from points A and B.

This suggests a proof of Theorem 5-2, the Perpendicular Bisector Theorem. Its converse is also true and is stated as Theorem 5-3.

Theorem

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

If . . .
$\overleftrightarrow{P M} \perp \overline{A B}$ and $M A=M B$

Then...
$P A=P B$

You will prove Theorem 5-2 in Exercise 32.

Theorem 5-3 Converse of the Perpendicular Bisector Theorem

Theorem

If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

If . . .
$P A=P B$

Then...
$\overleftrightarrow{P M} \perp \overrightarrow{A B}$ and $M A=M B$

You will prove Theorem 5-3 in Exercise 33.

Problem 1 Using the Perpendicular Bisector Theorem

Algebra What is the length of $\overline{A B}$?

How do you know $\overline{B D}$ is the perpendicular bisector of $\overline{A C}$? The markings in the diagram show that $\overline{B D}$ is perpendicular to $\overline{A C}$ at the midpoint of $\overline{A C}$.
$\overline{B D}$ is the perpendicular bisector of $\overline{A C}$, so B is equidistant from A and C.

$$
\begin{aligned}
B A & =B C & & \text { Perpendicular Bisector Theorem } \\
4 x & =6 x-10 & & \text { Substitute } 4 x \text { for } B A \text { and } 6 x-10 \text { for } B C . \\
-2 x & =-10 & & \text { Subtract } 6 x \text { from each side. } \\
x & =5 & & \text { Divide each side by }-2 .
\end{aligned}
$$

Now find $A B$.

$$
\begin{aligned}
& A B=4 x \\
& A B=4(5)=20 \quad \text { Substitute } 5 \text { for } x
\end{aligned}
$$

Got It? 1. What is the length of $\overline{Q R}$?

How do you find points that are equidistant from two given points? By the Converse of the Perpendicular Bisector Theorem, points equidistant from two given points are on the perpendicular bisector of the segment that joins the two points.

A park director wants to build a T-shirt stand equidistant from the Rollin' Coaster and the Spaceship Shoot. What are the possible locations of the stand? Explain.

Got It? 2. a. Suppose the director wants the T-shirt stand to be equidistant from the paddle boats and the Spaceship Shoot. What are the possible locations?
b. Reasoning Can you place the T-shirt stand so that it is equidistant from the paddle boats, the Spaceship Shoot, and the Rollin' Coaster? Explain.

Essential Understanding There is a special relationship between the points on the bisector of an angle and the sides of the angle.

The distance from a point to a line is the length of the perpendicular segment from the point to the line. This distance is also the length of the shortest segment from the point to the line. You will prove this in Lesson 5-6. In the figure at the right, the distances from A to ℓ and from B to ℓ are represented by the
 red segments.

In the diagram, $\overrightarrow{A D}$ is the bisector of $\angle C A B$. If you measure the lengths of the perpendicular segments from D to the two sides of the angle, you will find that the lengths are equal. Point D is equidistant from the sides of the angle.

Theorem 5-4 Angle Bisector Theorem

Theorem

If a point is on the bisector of an angle, then the point is equidistant from the sides of the angle.

If..
$\overrightarrow{Q S}$ bisects $\angle P Q R, \overrightarrow{S P} \perp \overrightarrow{Q P}$, and $\overline{S R} \perp \overrightarrow{Q R}$

Then...

$S P=S R$

You will prove Theorem 5-4 in Exercise 34.

Theorem 5-5 Converse of the Angle Bisector Theorem

Theorem

If a point in the interior of an angle is equidistant from the sides of the angle, then the point is on the angle bisector.

Then...
$\overrightarrow{S P} \perp \overrightarrow{Q P}, \overrightarrow{S R} \perp \overrightarrow{Q R}$, and $S P=S R$

$\overrightarrow{Q S}$ bisects $\angle P Q R$

You will prove Theorem 5-5 in Exercise 35.

How can you use the expression given for RP to check your answer?
Substitute 5 for x in the expression $2 x+25$ and verify that the result is 35 .

Problem 3 Using the Angle Bisector Theorem

Algebra What is the length of $\overline{R M}$?

Know	Need	Plan
$\overrightarrow{N R}$ bisects $\angle L N Q$.	The length	Use the Angle Bisector Therem to write an equation
$\overrightarrow{R M} \perp \overrightarrow{N L}$ and $\overrightarrow{R P} \perp \overrightarrow{N Q}$.	of $\overrightarrow{R M}$	Theor you can solve for x.

$R M$	$=R P$		Angle Bisector Theorem
$7 x$	$=2 x+25$		Substitute.
$5 x$	$=25$		Subtract $2 x$ from each side.
x	$=5$		Divide each side by 5.

Now find $R M$.

$$
\begin{aligned}
R M & =7 x \\
& =7(5)=35 \quad \text { Substitute } 5 \text { for } x
\end{aligned}
$$

Got It? 3. What is the length of $\overline{F B}$?

Lesson Check

Do you know HOW?

Use the figure at the right for Exercises 1-3.

1. What is the relationship between $\overline{A C}$ and $\overline{B D}$?
2. What is the length of $\overline{A B}$?
3. What is the length of $\overline{D C}$?

Do you UNDERSTAND?
MATHEMATICAL
PRACTICES
4. Vocabulary Draw a line and a point not on the line. Draw the segment that represents the distance from the point to the line.
5. Writing Point P is in the interior of $\angle L O X$. Describe how you can determine whether P is on the bisector of $\angle L O X$ without drawing the angle bisector.

Practice and Problem-Solving Exercises

Use the figure at the right for Exercises 6-8.
6. What is the relationship between $\overline{M B}$ and $\overline{J K}$?
7. What is value of x ?

8. Find $J M$.

Reading Maps For Exercises 9 and 10, use the map of a part of Manhattan.

See Problem 2.
9. Which school is equidistant from the subway stations at Union Square and 14th Street? How do you know?
10. Is St. Vincent's Hospital equidistant from Village Kids Nursery School and Legacy School? How do you know?
11. Writing On a piece of paper, mark a point H for home and a point S for school. Describe how to find the set of points equidistant from H and S.

Use the figure at the right for Exercises 12-15.
12. According to the diagram, how far is L from $\overrightarrow{H K}$? From $\overrightarrow{H F}$?
13. How is $\overrightarrow{H L}$ related to $\angle K H F$? Explain.
14. Find the value of y.
15. Find $m \angle K H L$ and $m \angle F H L$.

15. Find $m \angle K$ Kil

16. Algebra Find $x, J K$, and $J M$.

17. Algebra Find $y, S T$, and $T U$.

Algebra Use the figure at the right for Exercises 18-22.
18. Find the value of x.
19. Find $T W$.
20. Find $W Z$.
21. What kind of triangle is $\triangle T W Z$? Explain.
22. If R is on the perpendicular bisector of $\overline{T Z}$, then R is ? from T and Z, or ? = ? .

23. Think About a Plan In the diagram at the right, the soccer goalie will prepare for a shot from the player at point P by moving out to a point on $\overline{X Y}$. To have the best chance of stopping the ball, should the goalie stand at the point on $\overline{X Y}$ that lies on the perpendicular bisector of $\overline{G L}$ or at the point on $\overline{X Y}$ that lies on the bisector of $\angle G P L$? Explain your reasoning.

- How can you draw a diagram
 to help?
- Would the goalie want to be the same distance from G and L or from $\overline{P G}$ and $\overline{P L}$?

24. a. Constructions Draw $\angle C D E$. Construct the angle bisector of the angle.
b. Reasoning Use the converse of the angle bisector theorem to justify your construction.
25. a. Constructions Draw $\overline{Q R}$. Construct the perpendicular bisector of $\overline{Q R}$ to construct $\triangle P Q R$.
b. Reasoning Use the perpendicular bisector theorem to justify that your construction is an isosceles triangle.
26. Write Theorems 5-2 and 5-3 as a single biconditional statement.
27. Write Theorems 5-4 and 5-5 as a single biconditional statement.
28. Error Analysis To prove that $\triangle P Q R$ is isosceles, a student began by stating that since Q is on the segment perpendicular to $\overline{P R}, Q$ is equidistant from the endpoints of $\overline{P R}$. What is the error in the student's reasoning?
C. Writing Determine whether A must be on the bisector of $\angle T X R$. Explain.

29.

30.

31.

32. Prove the Perpendicular Proof Bisector Theorem.

Given: $\overleftrightarrow{P M} \perp \overline{A B}, \overleftrightarrow{P M}$ bisects $\overline{A B}$
Prove: $A P=B P$

33. Prove the Converse of the Proof Perpendicular Bisector Theorem.

Given: $P A=P B$ with $\overline{P M} \perp \overline{A B}$ at M.
Prove: P is on the perpendicular bisector of $\overline{A B}$.

35. Prove the Converse of the $\xrightarrow{\text { Proof }}$ Angle Bisector Theorem.

Given: $\overline{S P} \perp \overrightarrow{Q P}, \overrightarrow{S R} \perp \overrightarrow{Q R}$, $S P=S R$
Prove: $\overrightarrow{Q S}$ bisects $\angle P Q R$.

36. Coordinate Geometry Use points $A(6,8), O(0,0)$, and $B(10,0)$.
a. Write equations of lines ℓ and m such that $\ell \perp \overleftrightarrow{O A}$ at A and $m \perp \overleftrightarrow{O B}$ at B.
b. Find the intersection C of lines ℓ and m.
c. Show that $C A=C B$.
d. Explain why C is on the bisector of $\angle A O B$.
37. A, B, and C are three noncollinear points. Describe and sketch a line in plane $A B C$ such that points A, B, and C are equidistant from the line. Justify your response.
38. Reasoning M is the intersection of the perpendicular bisectors of two sides of $\triangle A B C$. Line ℓ is perpendicular to plane $A B C$ at M. Explain why a point E on ℓ is equidistant from A, B, and C. (Hint: See page 48, Exercise 33. Explain why $\triangle E A M \cong \triangle E B M \cong \triangle E C M$.)

Standardized Test Prep

39. For $A(1,3)$ and $B(1,9)$, which point lies on the perpendicular bisector of $\overline{A B}$?
(A) $(3,3)$
(B) $(1,5)$
(C) $(6,6)$
(D) $(3,12)$
40. What is the converse of the following conditional statement?

If a triangle is isosceles, then it has two congruent angles.
F If a triangle is isosceles, then it has two congruent sides.
(G) If a triangle has congruent sides, then it is equilateral.
(H) If a triangle has two congruent angles, then it is isosceles.
(I) If a triangle is not isosceles, then it does not have two congruent angles.
41. Which figure represents the statement $\overline{B D}$ bisects $\angle A B C$?
(A)

(C)

Short
 Response

42. The line $y=7$ is the perpendicular bisector of the segment with endpoints $A(2,10)$ and $B(2, k)$. What is the value of k ? Explain your reasoning.

Mixed Review

43. Find the value of x in the figure at the right.
44. $\angle 1$ and $\angle 2$ are complementary and $\angle 1$ and $\angle 3$ are supplementary. If $m \angle 2=30$, what is $m \angle 3$?

See Lesson 5-1.
See Lesson 1-5.

Get Ready! To prepare for Lesson 5-3, do Exercises 45-47.

45. What is the slope of a line that is perpendicular to the line $y=-3 x+4$?

See Lesson 3-8.
46. Line ℓ is a horizontal line. What is the slope of a line perpendicular to ℓ ?
47. Describe the line $x=5$.

